skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Krumhardt, Kristen_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The ocean removes man-made (anthropogenic) carbon from the atmosphere and thereby mitigates climate change. Observations from global hydrographic surveys reveal the spatial and temporal evolution of the ocean inventory of anthropogenic carbon and suggest substantial decadal variability in historical storage rates. Here, we use a 100-member ensemble of an Earth system model to investigate the influence of external forcing and internal climate variability on historical changes in ocean anthropogenic carbon storage over 1994 to 2014. Our findings reveal that the externally forced, decadal changes in storage are largest in the Atlantic (2–4 mmol m−3decade−1) and positive nearly everywhere. Internal climate variability modulates regional ocean anthropogenic carbon storage trends by up to 10 mmol m−3decade−1. The influence of internal climate variability on decadal storage changes is most prominent at depths of ∼300 m and at the edges of the subtropical gyres. Internal variability in anthropogenic carbon in the extratropics has high spectral power on decadal to multi-decadal timescales, indicating that the approximately decadal repetitions of hydrographic surveys may produce storage change estimates that are heavily influenced by internal climate variability. 
    more » « less
  2. Abstract Phytoplankton in the Arctic Ocean and sub‐Arctic seas support a rich marine food web that sustains Indigenous communities as well as some of the world's largest fisheries. As sea ice retreat leads to further expansion of these fisheries, there is growing need for predictions of phytoplankton net primary production (NPP), which will likely allow better management of food resources in the region. Here, we use perfect model simulations of the Community Earth System Model version 2 (CESM2) to quantify short‐term (month to 2 years) predictability of Arctic Ocean NPP. Our results indicate that NPP is potentially predictable during the most productive summer months for at least 2 years, largely due to the highly predictable Arctic shelves where fisheries in the Arctic are projected to expand. Sea surface temperatures, which are an important limitation on phytoplankton growth and also are predictable for multiple years, are the most important physical driver of this predictability. Finally, we find that the predictability of NPP in the 2030s is enhanced relative to the 2010s, indicating that the utility of these predictions may increase in the near future. This work indicates that operational forecasts using Earth system models may provide moderately skillful predictions of NPP in the Arctic, possibly aiding in the management of Arctic marine resources. 
    more » « less